320 research outputs found

    Evolution of Magnetic and Superconducting Fluctuations with Doping of High-Tc Superconductors

    Full text link
    Electronic Raman scattering from high- and low-energy excitations was studied as a function of temperature, extent of hole doping, and energy of the incident photons in Bi_2Sr_2CaCu_2O_{8 \pm \delta} superconductors. For underdoped superconductors, short range antiferromagnetic (AF) correlations were found to persist with hole doping, and doped single holes were found to be incoherent in the AF environment. Above the superconducting (SC) transition temperature T_c, the system exhibits a sharp Raman resonance of B_{1g} symmetry and energy of 75 meV and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi particles. The occupancy of the coherent state increases with cooling until phase ordering at T_c produces a global SC state.Comment: 6 pages, 4 color figures, PDF forma

    Evolution of Magnetic and Superconducting Fluctuations with Doping of High-Tc Superconductors (An electronic Raman scattering study)

    Full text link
    For YBa_2Cu_3O_{6+\delta} and Bi_2Sr_2CaCu_2O_8 superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped superconductors, it is concluded that short range antiferromagnetic (AF) correlations persist with hole doping and doped single holes are incoherent in the AF environment. Above the superconducting (SC) transition temperature T_c the system exhibits a sharp Raman resonance of B_1g symmetry and about 75 meV energy and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi-particles. The occupancy of the coherent state increases with cooling until phase ordering at T_c produces a global SC state.Comment: 5 pages, 4 EPS figures; SNS'97 Proceedings to appear in J. Phys. Chem. Solid

    No Far-Infrared-Spectroscopic Gap in Clean and Dirty High-TC_C Superconductors

    Full text link
    We report far infrared transmission measurements on single crystal samples derived from Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8}. The impurity scattering rate of the samples was varied by electron-beam irradiation, 50MeV 16^{16}O+6^{+6} ion irradiation, heat treatment in vacuum, and Y doping. Although substantial changes in the infrared spectra were produced, in no case was a feature observed that could be associated with the superconducting energy gap. These results all but rule out ``clean limit'' explanations for the absence of the spectroscopic gap in this material, and provide evidence that the superconductivity in Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} is gapless.Comment: 4 pages and 3 postscript figures attached. REVTEX v3.0. Accepted for publication in Phys. Rev. Lett. IRDIRT

    Pressure Dependence of the Irreversibility Line in Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta}:Role of Anisotropy in Flux-Line Formation

    Full text link
    One of the important problems of high-temperature superconductivity is to understand and ultimately to control fluxoid motion. We present the results of a new technique for measuring the pressure dependence of the transition to superconductivity in a diamond anvil cell. By measuring the third harmonic of the {\it ac} susceptibility, we determine the onset of irreversible flux motion. This enables us to study the effects of pressure on flux motion. The application of pressure changes interplanar spacing, and hence the interplanar coupling, without significantly disturbing the intraplanar superconductivity. Thus we are able to separate the effects of coupling from other properties that might affect the flux motion. Our results directly show the relationship between lattice spacing, effective- mass anisotropy, and the irreversibility line in Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta}. Our results also demonstrate that an application of 2.5 GPa pressure causes a dramatic increase in interplanar coupling.Comment: 4 pages, 4 figure

    Predominantly Superconducting Origin of Large Energy Gaps in Underdoped Bi2Sr2CaCu2O8-d from Tunneling Spectroscopy

    Get PDF
    New tunneling data are reported in underdoped Bi2Sr2CaCu2O8-d using superconductor-insulator-superconductor break junctions. Energy gaps, Delta, of 51+2, 54+2 and 57+3 meV are observed for three crystals with Tc=77, 74, and 70 K respectively. These energy gaps are nearly three times larger than for overdoped crystals with similar Tc. Detailed examination of tunneling spectra over a wide doping range from underdoped to overdoped, including the Josephson IcRn product, indicate that these energy gaps are predominantly of superconducting origin.Comment: 10 pages, 4 figures, 1 tabl

    Reply to Comment on:"Nonmonotonic d_{x^2-y^2} Superconducting Order Parameter in Nd_{2-x}Ce_xCuO_4"

    Full text link
    We confirm that all the results of scanning SQUID, tunneling, ARPES, penetration depth and Raman experiments are consistent with a nonmonotonic d_{x^2-y^2} superconducting order parameter proposed in Phys. Rev. Lett., 88, 107002 (2002).Comment: Reply to Comment by F. Venturini, R. Hackl, and U. Michelucci cond-mat/020541
    • …
    corecore